Tracking and Integration Aspects of a Mobile
Augmented Reality Tool for Shipbuilding

J-P. Arimaa, R. Suominen, A. Euranto, O. Lahdenoja, T. Knuutila and T. Lehtonen
Business and Innovation Development (BID)
20014 University of Turku, Finland
{ jpaari,rajusuo,akjeur,olanla,knuutila,tetale }@utu.fi

Abstract—In this paper, some of the architectural and tracking
aspects of the software engine used in our on-going MARIN
(Mobile Augmented Reality Tool for Marine Industry) project
are described. The purpose of the project is to construct an
augmented reality tool for shipbuilding. The future target usages
of the system vary from inspection to actually improving the
efficiency of some of the repeating procedures in shipbuilding.
The system also includes means for indoor localization and access
to the pre-existing CAD model of the ship. In our case, the
tool is hosted by Unity 3D, which allows the interfaces between
the inertial sensors and the visual tracking thread. Some of the
implementation issues related to these interfaces are described,
while some challenges related to visual tracking are also discussed.

I. INTRODUCTION

The mainstream approach for visual tracking is to extract
keypoints [1] [2] [3] and to determine the pose of the observer
from correspondeces between the preceding image frames and
the camera input frame. For pose initialization and tracking,
also the possibility of storing reference keypoints related to
particular objects may be used [4]. With mobile devices, one
of the challenges in real-time analysis is the computational
cost of the keypoint extraction [5]. On the other hand, the
performance of mobile devices is increasing and the usage
of integrated modern GPUs (Graphics Processing Units) may
provide solutions to this in the future.

MARIN (Mobile Augmented Reality Tool for Marine In-
dustry) project is an on-going project between the industry
partners, TEKES (The Finnish Funding Agency for Technol-
ogy and Innovation) and University of Turku, Finland. The
two-year project is in its midpoint as it was started in June
2012. The purpose of this project is to construct an augmented
reality tool for shipbuilding. One of our project partners has
provided access to the local shipyard at Turku for testing the
developed algorithms and determining the usage requirements.
The specific conditions in shipbuilding such as varying illu-
mination, temperature, humidity, dust and interference assess
special demands for the tracking.

The paper is organized in the following way. Section II
shows the overall system architecture. Sections III and IV de-
scribe the implementation aspects of the tracking and rendering
threads, respectively. Finally, discussion and conclusions are
given in sections V and VL

II. SYSTEM ARCHITECTURE AND INTEGRATION

In our case, very exact weekly updating 3D designs of the
operation environment exist. The overall system diagram of the

(Camera)
- o

 Display
User " ISPV A

—_— — -

|
Unity3D l

o T s JO o
CAD model

OpenCV

Fig. 1. System diagram, including tracking and rendering threads in Unity3D.

tool is described in Fig. 1. Unity3D [6] performs rendering.
The tracking thread uses a plug-in to the OpenCV [7]. The
main advantage of Unity3D is its cross-platform and plug-in
support. We use OpenCV library functions to calculate the
pose of the observer from the corresponding points between
the 3D world model and the image plane. A gyroscope is
interfaced from Unity3D allowing the integration of inertial
tracking data from the sensors within AR glasses. The tracking
and rendering threads are planned to co-operate forming a
feedback from the pose of the 3D world model to the pose
of the user [8] [9].

III. INITIALIZATION AND TRACKING

Pose estimation is carried out in initialization and tracking.
For initialization, there may be a need for guided manual input
so that the user picks points from the screen space and from the
3D model. Before these, either manual (e.g. map based) or au-
tomatic (e.g. visual recognition, RFID, WLAN or NFC) coarse
grain positioning determines the location of the user. Then it
may be assumed, that the tool can provide the exact 3D model
of the environment where the user is currently located. To
assist manual initialization, corner detection (e.g. Harris [10],
FAST [11], SUSAN [12]) can be used for localizing the points
corresponding to 3D model. After the pose initialization, the
tracking thread in Unity3D can acquire information from the
inertial sensors to assist the point tracking in OpenCV.

The position and the viewing direction (pose) of the ob-
server can be calculated, for example, by solving perspective-
n-point problem (PnP) [13]. PnP requires the coordinates of
an object in world space (2, Y, 2w) and the corresponding

Fig. 2. Ray shooting method. Image on the left shows the camera 2D view
of the scene aligned with the 3D objects. The image on the right shows an
example of rays shooted from the camera pose to the 3D model in Unity3D.

coordinates in screen space (x;, y;) which holds the view of
the real world. For tracking purposes, the model of the world
space does not change in our case, but by moving the camera
the respective screen points do change. Therefore, the screen
points need to be tracked. Nevertheless, it is possible to lose
screen points if they drift outside the image plane or by other
reasons such as rapid camera movements. Thus, it is required
that new world-screen-point pairs are found. In addition, the
tracked screen points need to be discernible (for example a
blank white wall is very difficult to track).

An initial method would be finding any visible point in the
world space and to project that particular point to image plane.
The downside is that the point is probably very difficult to
track. Another method would be to project the model vertices
and assume they are easier to track. Nevertheless, this method
has the same downside though it is probably a better solution.

Other way would be finding points that are easy to track
and shoot a ray from the camera through the image plane
and find the collision point in the world space. These points
can be found with corner detection (such as Harris corner
detection [10]). In addition, it is possible to compare the
collision points to vertices and if the distance between a
collision point and a vertex is shorter than a given threshold
it could be assumed that they are the same point. This
would allow the calculation of correction factors. Using corner
detection and ray casting is naturally slower than simple world
point projection (though finding visible vertices requires also
more calculation). Finding the corresponding screen and world
points also requires that the initial pose is known with a
very small error marginal. Nevertheless, that method has the
possibility of miss hit or finding wrong vertex (false positive).
Fig. 2 shows the shooting of rays into the 2D image plane
and the paths of the rays in Unity3D. Fig. 3 shows a potential
missed hit of the ray shooting.

Tests implemented so far have indicated that it is difficult to
find the exact corners that correspond to model vertices solely
based on 2D image data. The corner detection methods are,
for instance, sensitive to proper parameters used as thresholds.
Another alternative would be to use lines and to find their
endpoints in order to support corner detection. Lines can also
be used to determine the pose of the observer directly [2].
Line extraction with Hough transform, for example, have
been demonstrated to work with mobile phones with limited
accumulator space resolutions [14]. Based on our tests so far
on a laptop PC, this approach provided better results. Keypoint
locations of the scale-invariant descriptors such as SIFT [1]

@ Correct point
@ ralse point

Fig. 3. An example of a missed hit between the image plane and the actual

3D world object.

Fig. 4. Image from the ship aligned with rendered image.

and SURF [2] do not typically match to the vertices of the
3D model, but they could still be used to assist the tracking
of other specific locations.

IV. PERFORMANCE AND RENDERING

Tests with 640x480 sized images taken from the shipyard
indicated that the time elapsed for Harris and Shi-Tomasi
corner detection was typically less than 20ms and time for
Hough transform was appriximately 20-40ms with standard
OpenCV functions when using i5 @ 2.5GHz laptop PC.
Naturally the running time depends on the selected parameters,
especially for the Hough transform. The elapsed time for
solving the perspective-n-point problem (PnP) [13] in OpenCV
was typically less than 2ms. Fig. 4 shows an example of the
camera view aligned to the 3D world model in Unity3D.

Table I shows the rendering performance of Unity3D with
different devices when one block of the ship (shown in Fig. 5)
is rendered. Rendering is possible to complete with only 17
draw calls due to the usage of static batching (in parenthesis
is the number of draw calls without batching). Even though
the amount of frames per second (FPS) is acceptable it must
be kept in mind that there are several other tasks that need
also to be done (such as possible point tracking or keypoint
detection and pose estimation). Table I only considers the time
required for rendering. Devices used for performance testing
were Nokia Lumia 920 (S4 @ 1,5 GHz), Apple iPad 3 (A9
@ 1,0 GHz) and Samsung 700T Tablet (i5 @ 1,7 GHz).

Fig. 5.

Rendered model for the performance tests.

[Vertices [Triangles [Draw calls [700T (FPS) | iPad (FPS) [Lumia (FPS) |
[1561k [1306k [17(1431)] 60 [15 [45 |
TABLE L.

PERFORMANCE TESTS IN RENDERING A CERTAIN SHIP PART
MODEL.

V. DISCUSSION

In our case, very exact 3D designs of the whole ship
exist during the manufacturing. The tracking architecture was
designed to utilize this information. In the future, also SLAM
(Simultaneous Localization and Mapping) based tracking [15]
could be implemented to the system, for instance, by using
OpenCV library functions. Although in some cases there might
not be enough details in the steel walls of the ship for keypoint
based tracking, given a limited camera FOV, there usually exist
various machines and other temporaty objects in the scene,
which could provide the necessary keypoints. Another issue to
study in the future is how to distinquishing the model objects
from other possible obstacles in the scene.

One of the repeating procedures in shipbuilding which is
targeted to be made easier by the tool is assistance in making
changes and change requests. For instance, if new openings for
wiring need to be cut, the approval for ship structural strength
must be transferred between the installation workers and the
engineering staff. Information on the opening and its location
could then be transferred to the ship 3D model with the tool.

Certain aspects on the tracking architecture used in on-
going MARIN project were described in this paper. In order
to achieve real-time operation with a mobile platform, also
the performance requirements were coarsely estimated. For
real-time operation, all tasks should be done preferably in
less than 40 milliseconds (which means 25 FPS or higher),
which is challenging if the whole system is integrated to a
mobile phone or tablet. To facilitate the tracking, our intention
is to incorporate a smart camera [16] to the system, which
enables high tracking frame-rates with compact size and very
low power consumption.

VI. CONCLUSION

This paper presented some of the tracking status of the on-
going MARIN project. The architecture of the software engine,
which performs tracking and rendering was described, as well

as some alternatives to improve the tracking. The proposed
architecture and tracking solutions were designed bearing in
mind the current limitations of mobile phones and tablets,
while still providing a scalable solution for AR architecture
for various platforms. Our future work includes continuing the
software development and studying which parts of the tracking
could be benefited by an attached smart camera system.

ACKNOWLEDGMENT

The MARIN project is carried out in collaboration with
partners Nokia Oyj, BA Group Oy, Cadmatic Oy, Kovilta
Oy, Lloyd’s Register EMEA Helsinki, Nextfour Group Oy,
Premode Oy, STX Finland Oy, Wallius Hitsauskoneet Oy,
Microsoft Oy, Southwest Finland Center of Expertise - Mar-
itime Cluster Programme / Machine Technology Center Turku
Ltd, and Southwest Finland Center of Expertise / Ubiquitous
Computing Cluster Programme / Yrityssalo Oy. Most of the
funding comes from Tekes - the Finnish Funding Agency for
Technology and Innovation.

REFERENCES

[1] D. G. Lowe, "Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 60, 2, pp. 91-110, 2004.

[2] H. Bay, "From Wide-baseline Point and Line correspondences to 3D”,
PhD. Dissertation, Swiss Federal Institute of Technology, ETH, Zurich.

[3] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, "BRIEF: Computing
a Local Binary Descriptor Very Fast”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34, 7, pp. 1281 - 1298, 2012.

[4] M. Schaeferling, U. Hornung, G. Kiefer, "Object Recognition and
Pose Estimation on Embedded Hardware: SURF-Based System Designs
Accelerated by FPGA Logic”, International Journal of Recongurable
Computing, vol. 2012, Article ID 368351.

[5] R. Hoffman, H. Seichter, G. Reitmayr, ”A GPGPU Accelerated Descrip-
tor for Mobile Devices”, IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 289-290, 2012.

[6] http://www.unity3d.com

[71 G. Bradski, "The OpenCV Library”, Dr. Dobb’s Journal of Software
Tools, (2000).

[8] G. Reitmayr and T. Drummond, ”Going out: robust model-based tracking
for outdoor augmented reality”, IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), pp. 109 - 118, 2006.

[9] G. Klein and D. Murray, “Full-3D Edge Tracking with a Particle Filter”,
Proceedings of the British Machine Vision Conference (BMVC), pp.
1119-1128, 2006.

[10] C. Harris and M. Stephens, "A combined corner and edge detector”,
Proceedings of the 4th Alvey Vision Conference. pp. 147151, 1988.

[11] M. Trajkovic and M. Hedley, Fast corner detection”, Image and Vision
Computing 16, 2, pp. 7587, 1998.

[12] S. M. Smith and J. M. Brady, "SUSAN - a new approach to low level
image processing”, International Journal of Computer Vision, 23, 1, pp.
4578, 1997.

[13] D.F. Dementhon, L.S. Davis, "Model-based object pose in 25 lines of
code”, International Journal of Computer Vision, 15, 1-2, pp. 123-141,
1995.

[14] A. Hartl, G. Reytmayr, "Rectangular target extraction for mobile aug-
mented reality applications”, IEEE International Conference on Pattern
Recognition (ICPR), pp. 81-84, 2012.

[15] A.J. Davison, I. D. Reid, N. D. Molton, O. Stasse, "MonoSLAM: Real-
Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29, 6, pp. 1052-1067, 2007.

[16] http://www.kovilta.fi

